Coarse-graining of collective dynamics models A model for local body alignment

#### Pierre Degond

Imperial College London pdegond@imperial.ac.uk (see http://sites.google.com/site/degond/)

Joint works with:

Amic Frouvelle (Dauphine), Sara Merino-Aceituno (Imperial), Ariane Trescases (Cambridge)

arXiv:1605.03509 & arXiv:1701.01166

- 1. Individual-based model
- 2. Mean-Field model
- 3. Self-Organized Quaternionic Hydrodynamics (SOHQ)
- 4. Comparison with SOH dynamics for Vicsek
- 5. Conclusion

# 1. Individual-Based Model

#### Collective dynamics & self-organization



#### Link micro to macro scales

Lack of conservations Breakdown of chaos property

#### Phase transitions

Symmetry-breaking Jamming Continuum to network





#### Description of the system to model

Self-propelled agents which align with their neighbors Case 1: Alignment of their directions of motion (Vicsek) Case 2: Alignment of their full body attitude (new model)



Vicsek model



Body attitude alignment



Pierre Degond - Coarse-graining for collectiv



#### Individual-Based (aka particle) model

self-propelled  $\Rightarrow$  all particles have same constant speed a align with their neighbours up to a certain noise

 $X_k(t) \in \mathbb{R}^d$ : position of the k-th particle at time t  $V_k(t) \in \mathbb{S}^{d-1}$ : velocity orientation ( $|V_k(t)| = 1$ )

$$\begin{split} \dot{X}_k(t) &= aV_k(t) \\ dV_k(t) &= P_{V_k^{\perp}} \circ (\nu \bar{V}_k dt + \sqrt{2\tau} \, dB_t^k), \quad P_{V_k^{\perp}} = \mathsf{Id} - V_k \otimes V_k \\ \mathcal{J}_k &= \sum_{j, |X_j - X_k| \le R} V_j, \quad \bar{V}_k = \frac{\mathcal{J}_k}{|\mathcal{J}_k|} \end{split}$$

 $\nu$  alignment frequency;  $\tau$  noise intensity  $\mathcal{J}_k$ ,  $\bar{V}_k$  neighbors' mean velocity, mean orientation  $P_{V_k^{\perp}}$  projection on  $V_k^{\perp}$ , maintains  $|V_k(t)| = 1$   $\circ$  indicates Stratonovich SDE indicates Stratonovich SDE



#### Body attitude alignment model [M3AS, to appear]

 $X_k(t) \in \mathbb{R}^d$ : position of the k-th subject at time t  $A_k(t) \in SO(d)$ : rotation mapping reference frame  $(e_1, \dots, e_d)$  to subject's body frame  $A_k(t)e_1 \in \mathbb{S}^{d-1}$ : propulsion direction

$$\begin{split} \dot{X}_k(t) &= aA_k(t)e_1\\ dA_k(t) &= P_{T_{A_k(t)}}\mathrm{SO}(d) \circ (\nu \bar{A}_k dt + \sqrt{2\tau} \, dB_t^k),\\ M_k(t) &= \sum_{j, |X_j - X_k| \le R} A_j(t), \quad \bar{A}_k = \mathrm{PD}(M_k(t)) \end{split}$$



 $M_k$  arithmetic mean of neighbors' A matrices  $A = \mathsf{PD}(M) \Leftrightarrow \exists S$  symmetric s.t. M = AS (polar decomp.)  $P_{T_{A_k(t)}}\mathsf{SO}(d)$  projection on the tangent  $T_{A_k(t)}\mathsf{SO}(d)$ , maintains  $A_k(t) \in \mathsf{SO}(d)$ 

## Questions

Can we quantify the difference between the two models ?

Is body-alignment just Vicsek for direction of motion with frame dynamic superimposed to it ?

Or does body-alignment provide genuinely new dynamic ? i.e. do gradients of body frames orientation influence direction of motion ?

Not easy to answer with Individual-Based Model Goal: use coarse-grained model to answer this question

#### Quaternions

Quaternions:  $q = q_0 + q_1i + q_2j + q_3k$ ,  $q_0, \ldots, q_3 \in \mathbb{R}$ .  $i^2 = j^2 = k^2 = ijk = -1$ : division ring  $\mathbb{H}$  (non commutative)  $q = \operatorname{Re}q + \operatorname{Im}q$  with  $\operatorname{Re}q = q_0$ ,  $\operatorname{Im}q = q_1i + q_2j + q_3k$   $\mathbb{R}^3 \ni \vec{q} = (q_1, q_2, q_3) \approx q = q_1i + q_2j + q_3k \in \{q \in \mathbb{H}, \operatorname{Re}q = 0\}$ Conjugate  $q^* = \operatorname{Re}q - \operatorname{Im}q$ Scalar product  $p \cdot q = pq^* = \operatorname{Re}p \operatorname{Re}q + \operatorname{Im}p \cdot \operatorname{Im}q$ 

Unitary quaternions  $\mathbb{H}_1 = \{q \in \mathbb{H}, qq^* = 1\} \approx \mathbb{S}^3$   $\mathbb{H}_1 \ni q = \cos(\theta/2) + \sin(\theta/2)n, \ \theta \in [0, 2\pi), \ \vec{n} \in \mathbb{S}^2$ The map  $\mathbb{R}^3 \ni \vec{v} \to \operatorname{Im}(qvq^*) \in \mathbb{R}^3$  is rotation axis n angle  $\theta$ Given  $A \in \operatorname{SO}(3)$  encoded by q and  $-q \in \mathbb{H}_1$  $A(q_1)A(q_2) = A(q_1q_2)$ 

# Quaternion representation (d=3) [arXiv:1701.01166] 10

 $X_k(t) \in \mathbb{R}^d$ : position of the k-th subject at time t  $q_k(t) \in \mathbb{H}_1$ : quaternion encoding rotation mapping reference frame  $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$  to subject's body frame  $\vec{e}_1(q_k(t)) = \operatorname{Im}(q_k(t) e_1 q_k(t)^*) \in \mathbb{S}^{d-1}$ : propulsion direction

$$X_k(t) = a\vec{e}_1(q_k(t))$$
  

$$dq_k(t) = P_{q_k(t)^{\perp}} \circ (\nu F_k(t)dt + \sqrt{\tau/2} \, dB_t^k),$$
  

$$F_k(t) = \left(\bar{q}_k(t) \cdot q_k(t)\right) \bar{q}_k(t)$$

 $\bar{q}_k(t)$  leading eigenvector of tensor

$$Q_k(t) = \sum_{j, |X_j - X_k| \le R} q_j(t) \otimes q_j(t)$$

 $e_3$   $e_3(q)$  $e_1(q)$   $e_1(q)$ 

 $Q_k(t)$  de Gennes Q-tensor;  $\bar{q}_k(t)$  mean nematic alignment direction Describes alignment of  $q_k$  with  $\bar{q}_k$  or  $-\bar{q}_k$  $P_{q_k(t)^{\perp}}$  projection on  $q_k^{\perp}$ , maintains  $q_k q_k^* = 1$ Similarity with polymer models

Quaternion dynamics identical to previous rotation matrix dynamics

 $\downarrow$ 

#### 2. Mean-Field model

## Mean-field model

f(x,q,t) =particle probability density  $x \in \mathbb{R}^3$ ,  $q \in \mathbb{H}_1$ satisfies a Fokker-Planck equation

$$\begin{aligned} \partial_t f + a \vec{e}_1(q) \cdot \nabla_x f + \nabla_q \cdot (\mathcal{F}_f f) &= (\tau/4) \Delta_q f \\ \mathcal{F}_f(x, q, t) &= \nu P_{q^\perp} \left( (\bar{q}_f(x, t) \cdot q) \bar{q}_f(x, t) \right), \quad P_{q^\perp} = \mathsf{Id} - q \otimes q \\ \bar{q}_f(x, t) &= \mathsf{leading eigenvector of tensor} \\ \mathcal{Q}_f(x, t) &= \int_{|x'-x| < R} \int_{\mathbb{H}_1} f(x', q', t) \left( q' \otimes q' \right) dq' dx' \end{aligned}$$

$$\begin{split} \mathcal{Q}_f(x,t) &= \text{Q-tensor in a neighborhood of } x \\ (\bar{q}_f(x,t) \cdot q) \bar{q}_f(x,t) \text{ provides nematic alignment of } q \text{ with } \bar{q}_f(x,t) \\ \mathcal{F}_f(x,q,t)) &= \text{projection of nematic alignment direction on } q^\perp \\ (x,q) \in \mathbb{R}^3 \times \mathbb{H}_1 \text{ ; } \nabla_q \cdot, \nabla_q \text{: div and grad on } \mathbb{H}_1 \\ \Delta_q \text{ Laplace-Beltrami operator on } \mathbb{H}_1 \approx \mathbb{S}^3 \end{split}$$

 $\downarrow$ 

#### Passage to dimensionless units

Highlights important physical scales & small parameters

Choose time scale 
$$t_0$$
, space scale  $x_0 = at_0$   
Set  $f$  scale  $f_0 = 1/x_0^3$ ,  $F$  scale  $\mathcal{F}_0 = 1/t_0$   
Introduce dimensionless parameters  $\bar{\nu} = \nu t_0$ ,  $\bar{\tau} = \tau t_0$ ,  $\bar{R} = \frac{R}{x_0}$   
Change variables  $x = x_0 x'$ ,  $t = t_0 t'$ ,  $f = f_0 f'$ ,  $\mathcal{F} = \mathcal{F}_0 \mathcal{F}'$ 

Get the scaled Fokker-Planck system (omitting the primes):

$$\begin{aligned} \partial_t f + \vec{e}_1(q) \cdot \nabla_x f + \nabla_q \cdot (\mathcal{F}_f f) &= (\bar{\tau}/4) \Delta_q f \\ \mathcal{F}_f(x, q, t) &= \bar{\nu} P_{q^\perp} \left( (\bar{q}_f(x, t) \cdot q) \bar{q}_f(x, t) \right), \quad P_{q^\perp} = \mathsf{Id} - q \otimes q \\ \bar{q}_f(x, t) &= \mathsf{leading eigenvector of tensor} \\ \mathcal{Q}_f(x, t) &= \int_{|x'-x| < \bar{R}} \int_{\mathbb{H}_1} f(x', q', t) \left( q' \otimes q' \right) dq' dx' \end{aligned}$$

## Macroscoping scaling

Choice of  $t_0$  such that  $\bar{\tau} = \frac{1}{\varepsilon}$ ,  $\varepsilon \ll 1$ 

Macroscopic scale:

there are many velocity diffusion events within one time unit

Assumption 1:  $k := \frac{\bar{\nu}}{\bar{\tau}} = \mathcal{O}(1)$ 

Social interaction and diffusion act at the same scale Implies  $\bar{\nu}^{-1} = \mathcal{O}(\varepsilon)$ , i.e. mean-free path is microscopic

Assumption 2:  $\bar{R} = \varepsilon$ 

Interaction range is microscopic

and of the same order as mean-free path  $\bar{\nu}^{-1}$ Possible variant:  $\bar{R} = \mathcal{O}(\sqrt{\varepsilon})$ : interaction range still small but large compared to mean-free path. To be investigated later

#### Fokker-Planck under macroscopic scaling 15

With Assumption 2 (
$$ar{R}=\mathcal{O}(arepsilon)$$
 )

Interaction is local at leading order: by Taylor expansion:

$$Q_f = Q_f + \mathcal{O}(\varepsilon^2), \quad Q_f(x,t) = \int_{\mathbb{H}_1} f(x,q',t) \left(q' \otimes q'\right) dq'$$

 $Q_f(x,t) =$ local Q-tensor. From now on, neglect  $\mathcal{O}(\varepsilon^2)$  term

#### Fokker-Planck eq. in scaled variables

$$\begin{split} \varepsilon \big(\partial_t f^{\varepsilon} + \vec{e_1}(q) \cdot \nabla_x f^{\varepsilon}\big) &= -\nabla_q \cdot (F_{f^{\varepsilon}} f^{\varepsilon}) + \Delta_q f^{\varepsilon} \\ F_f(x,q,t) &= 4k P_{q^{\perp}} \big( (\bar{q}_f(x,t) \cdot q) \bar{q}_f(x,t) \big), \quad P_{q^{\perp}} = \mathsf{Id} - q \otimes q \\ \bar{q}_f(x,t) &= \mathsf{leading \ eigenvector \ of \ tensor} \\ Q_f(x,t) &= \int_{\mathbb{H}_1} f(x,q',t) \left(q' \otimes q'\right) dq' \\ \end{split}$$

 $\downarrow$ 

# 3. Self-Organized Quaternionic Hydrodynamics (SOHQ)

#### Collision operator

Model can be written

$$\partial_t f^{\varepsilon} + e_1(q) \cdot \nabla_x f^{\varepsilon} = \frac{1}{\varepsilon} C(f^{\varepsilon})$$

with collision operator

$$C(f) = -\nabla_q \cdot (F_f f) + \Delta_q f$$
  

$$F_f = 4kP_{q^{\perp}} \left( (\bar{q}_f \cdot q) \bar{q}_f \right)$$
  

$$\bar{q}_f \text{ leading eigenvector of } Q_f$$
  

$$Q_f = \int_{\mathbb{H}_1} f(q') \left( q' \otimes q' \right) dq'$$

When  $\varepsilon \to 0$ ,  $f^{\varepsilon} \to f$  (formally) such that C(f) = 0 $\Rightarrow$  importance of the solutions of C(f) = 0 (equilibria) C acts on q-variable only ((x, t) are just parameters)

#### Algebraic preliminaries

Force  $F_f$  can be written:  $F_f(v) = 2k \nabla_q ((\bar{q}_f \cdot q)^2)$ Note  $\bar{q}_f$  independent of q ((x, t) are fixed)

Rewrite:

$$C(f)(q) = \nabla_q \cdot \left[ -2k f \nabla_q \left( (\bar{q}_f \cdot q)^2 \right) + \nabla_q f \right]$$
  
=  $\nabla_q \cdot \left[ f \nabla_q \left( -2k \left( \bar{q}_f \cdot q \right)^2 + \ln f \right) \right]$ 

Let  $\bar{q} \in \mathbb{H}_1$  be given: Solutions of  $\nabla_q \left( -2k \left( \bar{q}_f \cdot q \right)^2 + \ln f \right) = 0$  are proportional to :

$$f(v) = M_{\bar{q}}(q) := \frac{1}{Z} \exp\left(2k(\bar{q} \cdot q)^2\right) \text{ with } \int_{\mathbb{H}_1} M_{\bar{q}}(q) \, dq = 1$$

'generalized' von Mises-Fisher (VMF) distribution

#### VMF distribution

Again:

$$M_{\bar{q}}(q) := \frac{e^{2k(q \cdot \bar{q})^2}}{\int_{\mathbb{H}_1} e^{2k(q' \cdot \bar{q})^2} dq'}$$

k > 0: concentration parameter;  $\bar{q} \in \mathbb{H}_1 \approx \mathbb{S}^3$ : orientation

Order parameter:  $c_1(k)$  s.t.  $\int_{\mathbb{H}_1} M_{\bar{q}}(q) e_1(q) dq = c_1(k) e_1(\bar{q})$  $k \stackrel{\checkmark}{\to} c_1(k), \quad 0 \le c_1(k) \le 1$ 

Here:

concentration parameter kand order parameter  $c_1(k)$ are constant



 $\downarrow$ 

#### Equilibria

20

Definition: equilibrium manifold  $\mathcal{E} = \{f(q) | C(f) = 0\}$ 

Theorem:  $\mathcal{E} = \{ \rho M_{\bar{q}} \text{ for arbitrary } \rho \in \mathbb{R}_+ \text{ and } \bar{q} \in \mathbb{H}_1 \}$ Note: dim  $\mathcal{E} = 4$ 

Proof: follows from entropy inequality:

$$\begin{split} H(f) &= \int C(f) \frac{f}{M_{\bar{q}_f}} \, dq = - \int M_{\bar{q}_f} \left| \nabla_q \left( \frac{f}{M_{\bar{q}_f}} \right) \right|^2 \leq 0 \\ \text{follows from } C(f) &= \nabla_q \cdot \left[ M_{\bar{q}_f} \nabla_q \left( \frac{f}{M_{\bar{q}_f}} \right) \right] \\ \text{Then, } C(f) &= 0 \text{ implies } H(f) = 0 \text{ and } \frac{f}{M_{\bar{q}_f}} = \text{Constant} \\ \text{and } f \text{ is of the form } \rho M_{\bar{q}} \\ \text{Reciprocally, if } f &= \rho M_{\bar{q}}, \text{ then, } \bar{q}_f = \bar{q} \text{ and } C(f) = 0 \end{split}$$

## Use of equilibria

 $f^{\varepsilon} \to f \text{ as } \varepsilon \to 0 \text{ with } q \to f(x,q,t) \in \mathcal{E} \text{ for all } (x,t)$ Implies that  $f(x,q,t) = \rho(x,t)M_{\bar{q}(x,t)}(q)$ Need to specify the dependence of  $\rho$  and  $\bar{q}$  on (x,t)Requires 4 equations since  $(\rho,\bar{q}) \in \mathbb{R}_+ \times \mathbb{H}_1 \approx \mathbb{R}_+ \times \mathbb{S}^3$  are determined by 4 independent real quantities

f satisfies

 $\partial_t f + e_1(q) \cdot \nabla_x f = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} C(f^{\varepsilon})$ Problem:  $\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} C(f^{\varepsilon})$  is not known

Trick:

Collision invariant

#### Collision invariant

is a function  $\psi(q)$  such that  $\int C(f)\psi dq = 0$ ,  $\forall f$ Form a linear vector space CI

Multiply eq. by  $\psi$ :  $\varepsilon^{-1}$  term disappears Find a conservation law:

$$\partial_t \Big( \int_{\mathbb{H}_1} f(x,q,t) \,\psi(q) \,dq \Big) + \nabla_x \cdot \Big( \int_{\mathbb{H}_1} f(x,q,t) \,\psi(q) \,e_1(q) \,dq \Big) = 0$$

Have used that  $\partial_t$  or  $\nabla_x$  and  $\int \dots dq$  can be interchanged Limit fully determined if dim  $\mathcal{CI} = \dim \mathcal{E} = 4$ 

 $\mathcal{CI} = \text{Span}\{1\}$ . Interaction preserves mass but no other quantity Due to self-propulsion, no momentum conservation  $\dim \mathcal{CI} = 1 < \dim \mathcal{E} = 4$ . Is the limit problem ill-posed ?

#### Use of CI: mass conservation eq.

23

#### Proof that $\psi(q) = 1$ is a CI ?

Obvious.  $C(f) = \nabla_q \cdot [\dots]$  is a divergence By Stokes theorem on the sphere,  $\int C(f) dq = 0$ 

Use of the CI  $\psi(q) = 1$ : Get the conservation law  $\partial_t \left( \int_{\mathbb{H}_1} f(x, q, t) \, dq \right) + \nabla_x \cdot \left( \int_{\mathbb{H}_1} f(x, q, t) \, e_1(q) \, dq \right) = 0$ 

With  $f=
ho M_{ar q}$  we have

$$\int f(x,v,t) \, dv = \rho(x,t), \quad \int f(x,v,t) \, e_1(q) \, dq = c_1 \rho(x,t) e_1(\bar{q}(x,t))$$

We end up with the mass conservation eq.

$$\partial_t \rho + c_1 \nabla_x \cdot \left(\rho e_1(\bar{q})\right) = 0$$

#### Generalized collision invariants (GCI)

24

Given 
$$\bar{q}_0 \in \mathbb{H}_1$$
, Define  $\mathcal{R}_{\bar{q}_0}(f) = \nabla_q \cdot \left[ M_{\bar{q}_0} \nabla_q \left( \frac{f}{M_{\bar{q}_0}} \right) \right]$   
Note  $f \to \mathcal{R}_{\bar{q}_0}(f)$  is linear and  $C(f) = \mathcal{R}_{\bar{q}_f}(f)$   
A function  $\psi_{\bar{q}_0}(q)$  is a GCI associated to  $\bar{q}_0$ , iff  
 $\int \mathcal{R}_{\bar{q}_0}(f)\psi_{\bar{q}_0} dq = 0$ ,  $\forall f$  such that  $P_{q_0^{\perp}}\left[ \left( \int_{\mathbb{H}_1} f(q) \left( q \otimes q \right) dq \right) \bar{q}_0 \right] = 0$ 

The set of GCI  $\mathcal{G}_{ar{q}_0}$  is a linear vector space

Theorem: Given  $\bar{q}_0 \in \mathbb{H}_1$ ,  $\mathcal{G}_{\bar{q}_0}$  is the 4-dim vector space :

$$\begin{split} \mathcal{G}_{\bar{q}_0} &= \{q \mapsto \alpha + h(q \cdot \bar{q}_0) \ \beta \cdot q, \text{ with arbitrary } \alpha \in \mathbb{R} \text{ and } \beta \in \mathbb{H} \text{ with } \beta \cdot \bar{q}_0 = 0 \}.\\ &\text{Introduce } r = q \cdot \bar{q}_0 \in [-1,1]. \ h \text{ is the unique solution in } V \text{ of:}\\ &-(1-r^2)^{-3/2} \exp\left(-2kr^2\right) \frac{d}{dr} \left[ (1-r^2)^{5/2} \exp\left(2kr^2\right) \frac{dh}{dr} \right] + (4k\,r^2 + 3)\,h(r) = -r\\ &V = \{h \mid (1-r^2)^{3/4}h \in L^2(-1,1), \ (1-r^2)^{5/4}h' \in L^2(-1,1)\}\\ &\text{Furthemore, } h \text{ is odd and non-positive for } r \geq 0 \end{split}$$

 $\downarrow$ 

#### Use of GCI: equation for $\bar{q}(x,t)$

Use GCI  $h(q \cdot \bar{q}_0)\beta \cdot q$  for  $\beta \in \mathbb{H}$  with  $\beta \cdot \bar{q}_0 = 0$ Equivalently, use the quaternion valued function  $\psi_{\bar{q}_0}(q) = h(q \cdot \bar{q}_0)P_{\bar{q}_0^{\perp}}q$ 

Multiply FP eq by GCI  $\psi_{\bar{q}_{f}\varepsilon}$ :  $O(\varepsilon^{-1})$  terms disappear  $\int C(f) \vec{\psi}_{\bar{q}_{f}} dv = \int \mathcal{R}_{\bar{q}_{f}}(f) \psi_{\bar{q}_{f}} dq = 0 \quad \text{by property of GCI}$ Circle  $\int (O_{f} \varepsilon + v_{f} - v_{f}) \nabla_{f} \varepsilon = 0$ 

Gives:  $\int (\partial_t f^{\varepsilon} + e_1(q) \cdot \nabla_x f^{\varepsilon}) \psi_{\bar{q}_f \varepsilon} dq = 0$ 

As 
$$\varepsilon \to 0$$
:  $f^{\varepsilon} \to \rho M_{\bar{q}}$  and  $\psi_{\bar{q}_{f^{\varepsilon}}} \to \psi_{\bar{q}}$  Leads to:  
$$\int \left(\partial_t (\rho M_{\bar{q}}) + e_1(q) \cdot \nabla_x (\rho M_{\bar{q}})\right) \psi_{\bar{q}} dq = 0$$

Not a conservation equation

because of dependence of  $\psi_{\bar{q}}$  upon (x,t) through  $\bar{q}$  $\partial_t$  or  $\nabla_x$  and  $\int \dots dq$  cannot be interchanged

Takes the form:

$$\begin{split} \rho \Big( \partial_t \bar{q} + c_2 \big( e_1(\bar{q}) \cdot \nabla_x \big) \bar{q} \Big) + c_3 [e_1(\bar{q}) \times \nabla_x \rho] \, \bar{q} \\ + c_4 \rho \big[ (\nabla_{x, \mathsf{rel}} \bar{q}) e_1(\bar{q}) + (\nabla_{x, \mathsf{rel}} \cdot \bar{q}) e_1(\bar{q}) \big] \bar{q} = 0 \end{split}$$

where

$$(\nabla_{x,\mathsf{rel}}\bar{q}) = (\partial_{x_i,\mathsf{rel}}\bar{q})_{i=1,2,3} = \left((\partial_{x_i}\bar{q})\bar{q}^*\right)_{i=1,2,3} \in \mathbb{H}^3_{\mathsf{Im}}$$
$$(\nabla_{x,\mathsf{rel}} \cdot \bar{q}) = \sum_{i=1,2,3} (\partial_{x_i,\mathsf{rel}}\bar{q})_i = \sum_{i=1,2,3} \left((\partial_{x_i}\bar{q})\bar{q}^*\right)_i \in \mathbb{R}$$

$$\mathbb{H}_{\mathsf{Im}} = \{q \in \mathbb{H}, \, \mathsf{Re}q = 0\} \approx \mathbb{R}^{3}$$
$$(\partial_{x_{i},\mathsf{rel}}\bar{q})_{j} = j\text{-th component of } \partial_{x_{i},\mathsf{rel}}\bar{q}$$
$$(\nabla_{x,\mathsf{rel}}\bar{q})e_{1}(\bar{q}) = \left((\partial_{x_{i},\mathsf{rel}}\bar{q}) \cdot e_{1}(\bar{q})\right)_{i=1,2,3}$$
$$\mathsf{Coefficients} \ c_{2} \text{ and } c_{4} \text{ depend on GCI } h$$

 $\downarrow$ 

# Resulting system: SOHQ

Self-Organized Quaternionic Hydrodynamics (SOHQ) System for density  $\rho(x,t)$  and quaternion orientation  $\bar{q}(x,t)$ :

 $\begin{aligned} \partial_t \rho + c_1 \nabla_x \left( \rho e_1(\bar{q}) \right) &= 0 \\ \rho \left( \partial_t \bar{q} + c_2 \left( e_1(\bar{q}) \cdot \nabla_x \right) \bar{q} \right) + c_3 \left[ e_1(\bar{q}) \times \nabla_x \rho \right] \bar{q} \\ &+ c_4 \rho \left[ (\nabla_{x, \mathsf{rel}} \bar{q}) e_1(\bar{q}) + (\nabla_{x, \mathsf{rel}} \cdot \bar{q}) e_1(\bar{q}) \right] \bar{q} = 0 \\ |\bar{q}| &= 1 \end{aligned}$ 

 $\downarrow$ 

# 4. Comparison with SOH dynamics for Vicsek

#### SOH model for the Vicsek dynamics

Vicsek mean-field model for  $f^{\varepsilon}(x, v, t)$ position  $x \in \mathbb{R}^3$ , velocity orientation  $v \in \mathbb{S}^2$ As  $\varepsilon \to 0$ ,  $f^{\varepsilon}(x, v, t) \to \rho(x, t) \mathcal{M}_{\Omega(x, t)}(v)$  $\rho(x, t) \ge 0$ ,  $\Omega(x, t) \in \mathbb{S}^2$  $\mathcal{M}_{\Omega}(v) = \frac{1}{Z} \exp(k(\Omega \cdot v))$ ,  $\int_{\mathbb{S}^2} \mathcal{M}_{\Omega}(v) dv = 1$  $(\rho(x, t), \Omega(x, t))$  solves SOH model:

$$\begin{aligned} \partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0 \\ \rho \left( \partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega \right) + c_3 P_{\Omega^{\perp}} \nabla_x \rho &= 0, \quad P_{\Omega^{\perp}} = \mathsf{Id} - \Omega \otimes \Omega \\ |\Omega| &= 1 \end{aligned}$$

Similar to Compressible Euler eqs. of gas dynamics System of hyperbolic eqs.

But major differences:

Geometric constraint  $|\Omega| = 1$ : requires  $P_{\Omega^{\perp}}$  to be maintained System is non conservative due to the presence of  $P_{\Omega^{\perp}}$  $c_2 \neq c_1$ : loss of Galilean invariance

#### SOHQ model in frame representation

$$\begin{split} \bar{q}(x,t) \in \mathbb{H}_1 \text{ encodes rotation } \Lambda(x,t) \in SO(3) \\ \Lambda(x,t) \text{ describes agents' local average body attitude} \\ \Omega(x,t) = \Lambda(x,t)e_1 = e_1(\bar{q}(x,t)): \text{ direction of motion} \\ u(x,t) = \Lambda(x,t)e_2 = e_2(\bar{q}(x,t): \text{ belly to back} \\ v(x,t) = \Lambda(x,t)e_3 = e_3(\bar{q}(x,t): \text{ right to left wing} \end{split}$$

SOHQ model equivalent to

$$\begin{aligned} \partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) &= 0 \\ \rho \left( \partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega \right) + P_{\Omega^{\perp}} \left( c_3 \nabla_x \rho - c_4 \rho \, r(\Omega, u, v) \right) &= 0 \\ \rho \left( \partial_t u + c_2 (\Omega \cdot \nabla_x) u \right) - u \cdot \left( c_3 \nabla_x \rho - c_4 \rho \, r(\Omega, u, v) \right) \Omega + c_4 \rho \, \delta(\Omega, u, v) v &= 0 \\ \rho \left( \partial_t v + c_2 (\Omega \cdot \nabla_x) v \right) - v \cdot \left( c_3 \nabla_x \rho - c_4 \rho \, r(\Omega, u, v) \right) \Omega - c_4 \rho \, \delta(\Omega, u, v) u &= 0 \\ |\Omega| &= |u| = |v| = 1, \quad \Omega \cdot u = u \cdot v = v \cdot \Omega = 0 \end{aligned}$$

with  $r(\Omega, u, v)$  (for rotational) and  $\delta(\Omega, u, v)$  (for divergence):  $r(\Omega, u, v) = (\Omega \cdot \nabla_x)\Omega + (u \cdot \nabla_x)u + (v \cdot \nabla_x)v \in \mathbb{R}^3$  $\delta(\Omega, u, v)u = [(\Omega \cdot \nabla_x)u] \cdot v + [(u \cdot \nabla_x)v] \cdot \Omega + [(v \cdot \nabla_x)\Omega] \cdot u \in \mathbb{R}$ 

# SOH (Vicsek) vs SOHQ (full body alignment) 31

Compare eqs for  $\rho$  and  $\Omega$ :

SOH: Coarse-grained Vicsek model

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) = 0$$
  
$$\rho \left( \partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega \right) + c_3 P_{\Omega^{\perp}} \nabla_x \rho = 0$$

SOHQ: Coarse-grained body orientation model

$$\partial_t \rho + c_1 \nabla_x \cdot (\rho \Omega) = 0$$
  
$$\rho \left( \partial_t \Omega + c_2 (\Omega \cdot \nabla_x) \Omega \right) + P_{\Omega^{\perp}} \left( c_3 \nabla_x \rho - c_4 \rho \, r(\Omega, u, v) \right) = 0$$

Difference is the term

$$r(\Omega, u, v) = (\Omega \cdot \nabla_x)\Omega + (u \cdot \nabla_x)u + (v \cdot \nabla_x)v$$

Shows how differences in body orientation affect direction of the flock

#### Answers

Can we quantify the difference between the Vicsek and body alignment models ?

YES: by using coarse-grained models SOH and SOHQ respectively

Is body-alignment just Vicsek for direction of motion with frame dynamic superimposed to it ? Answer is 'NO'

Or does body-alignment provide genuinely new dynamic ? i.e. do gradients of body frames orientation influence direction of motion ? Answer is 'YES'

### 5. Conclusion

### Summary & Perspectives

New collective dynamics model relying on full body alignment body frame alignment ⇔ quaternion nematic alignment

Coarse-grained model is SOHQ

First order PDE for density and local average quaternion describes dynamics of agents' local mean body frame dynamics genuinely  $\neq$  from velocity alignment (Vicsek or SOH)

Perspectives

analysis of the model rigorous proof of convergence numerical simulations Higher dimensions